Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification.
نویسندگان
چکیده
The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/β-catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstream of GSK3 inhibition, elevated cMyc and β-catenin act in parallel to reduce transcription and DNA binding, respectively, of the transcriptional repressor Tcf7l1. Tcf7l1 represses FoxA2, a pioneer factor for endoderm specification. Deletion of Tcf7l1 is sufficient to allow upregulation of FoxA2 in the presence of Activin. In wild-type cells, cMyc contributes by reducing Tcf7l1 mRNA, while β-catenin acts on Tcf7l1 protein. GSK3 inhibition is further required for consolidation of endodermal fate via upregulation of Sox17, highlighting sequential roles for Wnt signalling. The identification of a cMyc/β-catenin-Tcf7l1-FoxA2 axis reveals a de-repression mechanism underlying endoderm induction that may be recapitulated in other developmental and patho-logical contexts.
منابع مشابه
Convergence of cMyc and b-catenin on Tcf7l1 enables endoderm specification
The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/ b-catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstre...
متن کاملTcf7l1 prepares epiblast cells in the gastrulating mouse embryo for lineage specification.
The core gene regulatory network (GRN) in embryonic stem cells (ESCs) integrates activities of the pro-self-renewal factors Oct4 (Pou5f1), Sox2 and Nanog with that of an inhibitor of self-renewal, Tcf7l1 (Tcf3). The inhibitor function of Tcf7l1 causes dependence on extracellular Wnt/β-catenin signaling activity, making its embryonic role within the ESC GRN unclear. By analyzing intact mouse emb...
متن کاملFrizzled1/2/7 signaling directs β-catenin nuclearisation and initiates endoderm specification in macromeres during sea urchin embryogenesis.
In sea urchins, the nuclear accumulation of β-catenin in micromeres and macromeres at 4th and 5th cleavage activates the developmental gene regulatory circuits that specify all of the vegetal tissues (i.e. skeletogenic mesoderm, endoderm and non-skeletogenic mesoderm). Here, through the analysis of maternal Frizzled receptors as potential contributors to these processes, we found that, in Parac...
متن کاملβ-Catenin-Driven Binary Fate Specification Segregates Germ Layers in Ascidian Embryos
β-catenin is a transcriptional cofactor mediating the "canonical" Wnt signaling pathway, which activates target genes in a complex with TCF (LEF) transcription factors [1]. In many metazoans, embryos are first subdivided during early cleavage stages into nuclear β-catenin-positive and -negative domains, with β-catenin specifying endoderm or mesendoderm fate. This process has been demonstrated i...
متن کاملRetinoic Acid-Activated Ndrg1a Represses Wnt/β-catenin Signaling to Allow Xenopus Pancreas, Oesophagus, Stomach, and Duodenum Specification
How cells integrate multiple patterning signals to achieve early endoderm regionalization remains largely unknown. Between gastrulation and neurulation, retinoic acid (RA) signaling is required, while Wnt/β-catenin signaling has to be repressed for the specification of the pancreas, oesophagus, stomach, and duodenum primordia in Xenopus embryos. In attempt to screen for RA regulated genes in Xe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 35 3 شماره
صفحات -
تاریخ انتشار 2016